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Abstract. Theelectronic statesin acylindricalquantum well (caw) in the presenceof astrong 
axial magnetic field are investigated numerically. We have found that the size quantisations 
due to the lateral confinements may be destroyed by the strong magnetic field and, when the 
applied field is larger than a critical magnetic field, the quantised energy levels associated 
with the radial quantum numbers (n = 2 , 3 , 4 ,  . . .) are completely smeared out, except the 
first radial quantised energy level associated with n = 1. The numerical calculation predicts 
acriticalmagneticfieldB, = K2, where Ristheradiusofthecaw.  Usingtheresultsobtained, 
we have successfully explained an unexpected experimental phenomenon related to the 
damping of oscillations of the density of states in a quasi-one-dimensional wire under a strong 
longitudinal magnetic field. 

For nearly a decade, studies of the quantum Hall effect (QHE) in a two-dimensional (2D) 
system in the presence of a strong magnetic field perpendicular to the 2~ layer have 
attracted much interest. The Landau quantisation induced by the transverse magnetic 
fieid plays a very important role in the QHE, but the effect of the longitudinal magnetic 
field parallel to the ZD layer is somewhat subtle. Several papers [l] have dealt with the 
effect of the longitudinal magnetic field on the collective modes. However, in a quasi- 
one-dimensional (quasi-iD) quantum well wire the motion of electrons is quantum 
mechanically confined in two directions. In this case, a longitudinal magnetic field will 
play an essential role owing to the mixing of electronic and magnetic quantisation. 

Recently, it was observed [2] that a new anisotropy exists in a quasi-iD electron 
system in the presence of a magnetic field. The density of states changes dramatically 
when a magnetic field is applied along different axes of the sample. In particular, it was 
found that an appropriate magnetic field (in the x direction) parallel to the wires may 
completely destroy the electric quantisation related to the lateral confinements, which 
is an intriguing and unexpected phenomenon which has not yet been understood. 

When the longitudinal magnetic field is applied, two lateral confinements as well 
as the magnetic confinement are strongly mixed. The electrons remain free in the 
longitudinal direction (essentially ID). It is evident that for a ID wire with rectangular 
cross section, when the ratio of the two lateral sizes is too small (or too large), the 
confinement in one direction becomes much stronger than that in the other direction, 
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and then these two lateral confinements may decouple each other. If the cross section is 
chosen to be a circle, on the other hand, coupling between lateral confinements will be the 
strongest. Here we present a simple model calculation to explain this fact qualitatively. 

For simplicity, we consider an electron gas confined in an infinite cylindrical quantum 
well (caw) with a radius R in the presence of a magnetic field Boalong the axial direction; 
then we can directly write the effective-mass Hamiltonian describing an electron in the 
CQW [ l ]  using the symmetric gauge: 

H = -(h/2p*)[d2/dz2 + d 2 / d r 2  + (l/r)d/dr + (l/r2)a2/lay2] 

- (iehBo/2p*c)d/dcp + (e2B;/8,u*c2)r2 + Veff(r). (1) 

Here, ( r ,  q ,  z) are the cylindrical coordinates, and the effective radial potential Veff(r) = 
0 for r < R and Veff(r) = cc for r > R. The electronic wavefunction can be written as [ l ]  

In, m, k )  = exp[i(kz + m9)l  F n , m ( r )  ( 2 )  

where Fn,,(r)  is the eigenfunction for motion in the radial effective potential Verf(r), m 
is the angular quantum number, k is the wavevector along the axial direction and n is 
the radial quantum number relating to the numbers of nodes of the wavefunctions. 
Substituting equations (1) and (2) into the Schrodinger equation gives the following 
radial equation: 

[ r2  d2 /d r2  + r d / d r  - (m2 - &,,,r2 + r4/4aL)] Fn.,(r) = 0 (3) 

where 

0, = eBo/p*c aL  = (hc/eB0)'/* 

E ~ , ,  = (2p*/h)(En,, - h2k2/2p* - mhoc/2).  (4) 

w, is the cyclotron frequency and aL is the Landau radius (magnetic length). Introducing 
two dimensionless quantities 

x = &'I2 n . m r  P n . m  = 1/2a?.En,m ( 5 )  

where Pn,, (R/aL)* if n,  m are given, we obtain the solution of equation (3): 

with the recurrence relation of the coefficients 

and 

a, = 1/2"! am+2 = -1/2"+*(m + l ) !  

Here xim) stands for the nth node of the function Lh,(x). The energy levels are given by 

E,,, = h2k2 /2p*  + T ~ ~ ( x $ ~ ) ) ~ / 2 p * R ~  + mhw,/2. (9) 

In particular, when Pn, ,  = 0 (or Bo = 0), Lh,(x) will reduce exactly to the mth-order 
Bessel function Jm(x) .  The wavefunctions Lho(x) and Lh,(x) for different values of Pn, ,  
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Figure 1. The wavefunctions (a) Lh,(x) and ( b )  L h , ( x )  for different values of p.,,,. From it 
we can see how the nodes gradually degenerate two by two. 

are shown in figure I ,  Here the magnetic field Bo is a single valued and monotonically 
increasing function of Pn,,. For given Pn.,, the Pn,,  dependence of the magnetic field 
Bo changes with different states or different values of n and m. From this we know that 
the nodes of Lho(x) and Lh, (x )  will gradually degenerate two by two with increasing 
Pn,,  (or Bo),  except that finally only the first node remains. Above a critical value 
Pi,,, all the nodes, except the first node, will disappear. Of course, Pi,, changes with 
different angular quantum numbers m, which implies that only the electronic state with 
radial quantum number n = 1 exists for any given value of m in this case. It should be 
noted that Pn,,[xLm)I2 = @/ao = gn , ,  is the quantum flux, which is a physical quantity 
independent of the radius R of the CQW, although the critical magnetic field B, may 
depend on it. From equation (9) we also know that the nodes xim) are related to the 
radial quantisation of energy for different m. Figure 2 presents the magnetic field 
dependence of energy levels for R = 750 A, ,U* = 0.041me(A1,-,Ga,As-GaAs) and 
k = 0. Here the free motion of electrons along the axial direction is not affected by the 
magnetic field, and it decouples with the radial and azimuthal motion of electrons; then 
we can choose k = 0 for simplicity. From figure 2 we can see the evident diamagnetic 
shifts of the energy levels. It should be noted that the meanings of ‘radial excited state’ 
and ‘radial ground state’ below are different from the general meanings of the excited 
and ground states. They are just introduced to sign the states for simplicity. If the 
magnetic field is strong enough, all the excited states with radial quantum number n = 
2,3,4,  . . . for any given value of angular quantum number m, which are referred to the 
‘radial excited state’ here, will degenerate two by two and then disappear on further 
increase in Bo. Here we show only the degeneration of energy levels of Eo,* and Eo,3. 
Also, if Bo > 4.450 T (orPn,, > 0.40), we see that the energy level El,l of the first ‘radial 
ground state’ will be approximately proportional to the magnetic field Bo. This implies 
that the electrons have nearly been localised at the boundary of CQW, which is usually 
called the edge state [3-51. Here the states with radial quantum number n = 1 are 
referred to as the ‘radial ground states’. When n = 1 and m = 1, 2, 3, . , ., these are 
first, second, third, , , . ‘radial ground states’, respectively. However, n = 1 and m = 0 
represent the real ground state of the system. When Bo = 0.589-3.604 T, the energy El,l 
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Figure 2. The magnetic field dependence 
of energy levels En,m for different values of 
the quantum numbers: W ,  n = 1, m = 0; 
A , n =  l , m =  l ; @ , m = O , n = 2 ; x , m =  
0, n = 3. The parameters are given by R = 
750 A ,  p* = 0.041 m, and K = 0. 

of the first ‘radial ground state’ increases dramatically and then deviates greatly from 
the decoupling behaviour (in which El,l = El,l (Bo = 0) + hwc/2). 

Numerical calculation shows that the critical quantum flux gi ,m = / ~ F , , , [ X ~ ( W Z > ] ~  sat- 
isfies g!,o > & > . . . > &,, > . . . , e.g. ,  gt,o = 8.86, and & = 8.50. It can easily be 
seen that, for given m, x2(m) and x3(m) are the last pair of nodes to degenerate, e.g., 
the nodes x2(0) and x3(0) for m = 0 as shown in figure 1. Using the maximum of g;,, , the 
critical magnetic field can be estimated as 

Bc = (Qjo/~R2)gE,o (10) 
which is shown in figure 3, in which B, cc R-2 is an important theoretical prediction. This 
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is rather obvious on dimensional grounds: the crossover from 3D to ID behaviour must 
occur at some critical value of the dimensionless parameter A = R/uL, i.e., A, = eB,R2/ 
he or B, x R2. 

Indeed, although the geometric structures used are different, we can still compare 
qualitatively the theoretical result obtained with the experimental result given by 
figure 3 of [2]. In [2], two lateral sizes L, and L, of the quasi-iD wire with rectangular 
cross section are about 100 8, and 3000 A, respectively. When the longitudinal magnetic 
field Bo is about 8.0 T, the oscillation of the density of states, which arises because of 
the changes in the Fermi energy and occurs when the Fermi energy crosses a ID sub- 
band (in the CQW model these ID sub-bands are referred to as the energy levels En,0 of 
‘radial excited states’ for n = 2 ,3 ,4 ,  . . . and m = 0), completely disappears. We think 
that, when the magnetic field Bo > B,, only the energy levels E l , m  of the ‘radial ground 
states’ are retained, but no = 22.6 meV is so large that we cannot see the El,m (m = 
1,2 ,3 ,  . . .) energy levels in figure 3 of [2]. In principle, the magnetic levels in figure 3 
of [2] corresponding to the El,m (m 5 1) energy levels in our model would be observed 
when the gate voltage is large enough to provide a higher electron density. As discussed 
above, we know that the damping of the ‘radial excited states’ (n = 2 ,3 ,4 ,  . . .), which 
is related to the damping of oscillations of the density of states in figure 3 of [2], is definite 
if the magnetic field is strong. Because the magnetic flux should remain the same in 
two different structures, we can estimate the effective radius Reff of the CQW with a 
geometrical structure factor y 5 1: 

From figure 3, we estimate Reff to be approximately equal to 382 8, for B, = 8.0 T. 
If the magnetic field is applied along the direction perpendicular to the plane con- 

taining the quasi-1D wires, as shown in figure l(a) of [2], the magnetic field couples the 
free motion (in the x direction) with the y-direction-confined motion. Thus, Reff is 
relatively large (aL = 148 8, for Bo = 3.0 T)  compared with the case in which Bo is along 
the longitudinal direction and, when B, = 3.0 T, we see the damping of oscillations of 
the ID sub-bands except that the magnetic levels in figure l(a) of [2] corresponding to 
the El ,m energy levels in the CQW are retained. In figure 2 of [2], the magnetic field 
couples the free motion (in the x direction) with the z-direction-confined motion. 
Because L, = L,/30, Ref, is very small in this case compared with the case in which Bo is 
along the direction perpendicular to the plane containing the quasi-ir> wires; thus we do 
not see the damping of oscillations with Bo up to 20 T, because of the very large critical 
magnetic field B, -- 90.0 T given by equation (10) in this case. If the lateral size L, is 
increased, e.g., L, = 500 A, we predict that the damping oscillations of the density of 
states as in figure l(u) of [2] can be observed with Bo above 18.0 T. 

It should be pointed out that, although the comparison given here between the 
theoretical and the experimental result is not exactly quantitative, the relation between 
the critical magnetic field B, and the radius of the CQW is an important theoretical 
prediction. We shall be carrying out experiments with different lateral sizes so as to 
verify the prediction B, 

Reff = Y(L,L,/n)’/2. (11) 

R-2 given by this theory. 
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Appendix 

In equation (5), we have introduced the parameter /3n.m as 

Pn,m = 1/2a?~,, ,  = R’/~LZ?[X$~)]’ 

where xim) is the nth node of the function Lhm(x). Furthermore, we have emphasised 
that the magnetic field Bo should be a single-valued and monotonically increasing 
function of and the Pn,m dependence of Bo changes with different values of n and 
m. In fact, when Bo is large enough, the magnetic length will be small compared with 
the radius R, and the system is essentially two dimensional. In such a case, /3n,m+ as 
Bo+ w ,  and the transformation given by equation ( 5 )  is no longer effective, since the 
series in equation (6) does not converge as/3n,m + =. Alternatively, we introduce another 
transformation in equation (6): 

f = x2/2a;~,,, (A21 

then equation (6) can be rewritten as 

whereA is a normalisation factor, ,F,(a, b ,  f )  is the Kummer function and E , , ~  satisfies 
the condition 

1 F 1 [ - ( ~ n , m h / 2 ~ c p *  - m/2 - a), m + 1, R2/2a?] = 0. (A41 

It is clear that, in the region 0 < Bo < w ,  both equation (6) and equation (A4) give 
exactly the same result, When Bo + CO, or aL + 0, in order to ensure that F n , m ( f )  is finite 
in the whole region r 6 R, the following condition must be satisfied: 

~, , ,h/2w,p* - m/2 - - - n ,  (A51 

En,m = hwc[n, - (iml - m)/2 + 41 + h2k2/2p*. 

where n, is a nonnegative integer. Equation (A5) can be rewritten as [6] 

(A61 

The quantum number n, is just the Landau level index for positive values of m, while for 
negative values the Landau level index reads n, - Iml. To be sure that En,m must be 
positive, we know that n, = 0, 1 ,2 ,3 ,  , , . , and /mi 6 n,. It should be noted that the result 
in equation (A6) is an exact solution of equation (A4) only at the point Bo+ x .  In fact, 
equation (A4) is just a formal solution; it can only be solved in the way similar to that of 
equation (6). However, equation (A3) cannot give a reasonable result in another well 
known limiting case when Bo+ 0, since the transformation in equation (A2) becomes 
trivial which gives f + 0 as Bo + 0. On the contrary, equation (6) is able to give explicitly 
the exact solution as Bo+ 0: 

F n , m  = J m  (x> (-47) 

where Jm(x) is the mth order Bessel function. 
From the discussion above, we know that equations (6) and (A4) give two different 

solutions for two well known limiting cases, i.e. Bo+ 0 and Bo+ x ,  respectively. 
Moreover, equations (6) and (A4) will give the same solution in the region 0 < Bo < W .  
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Figure Al .  The dependence of the parameter p n , m  
on magnetic field Bo for different values of the 
quantum numbers: W ,  n = 1, m = 0; A, n = 1, 
m = 1; 0, m = 0, n = 2; X,  m = 0, n = 3. The 
radius is given by R = 750 A.  

Figure 4 presents the magnetic field Bo dependence of the parameter p,,,, and from this 
we can see that the magnetic field Bo is a single-valued and monotonically increasing 
function of /3n,m. Equation (6) is valid for 0 S Bo < x., excluding the point Bo = x., while 
equation (A4) is valid for 0 < Bo S x., excluding the point Bo = 0. It is impossible to 
obtain the solution of equation (A4) at the point Bo = x from equation (6). 

On the other hand, we should emphasise that the radial quantum number n and the 
Landau level index n, or n, - lml are totally different; they refer to the radial electric 
quantisation and the Landau quantisation, respectively, and the Landau quantisation 
only exists in a 2~ system or in the high-field limit Bo = x.. 
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